MicroRNA-200a suppresses metastatic potential of side population cells in human hepatocellular carcinoma by decreasing ZEB2

نویسندگان

  • Xisheng Yang
  • Jianlin Wang
  • Shibin Qu
  • Hongtao Zhang
  • Bai Ruan
  • Yuan Gao
  • Ben Ma
  • Xing Wang
  • Nan Wu
  • Xiaolei Li
  • Kefeng Dou
  • Haimin Li
چکیده

Although microRNA-200a (miR-200a) is frequently downregulated in cancer, its role in side population (SP) has not been investigated. In this study, 101 pairs of primary hepatocellular carcinoma (HCC) tissues and matched normal control tissues were analyzed for miR-200a expression and its clinicopathological value was determined. We found that miR-200a was downregulated in HCC/SP and this was associated metastasis. MiR-200a suppressed metastasis of SP cells. Overexpression of miR-200a in SP cells decreased metastasis-related markers and expression of ZEB2. The associations between miR-200a, SP cells and ZEB2 were validated in HCC. These findings reveal that miR-200a suppresses metastasis of SP cells by downregulating ZEB2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma.

In a previous study, we found that microRNA (miRNA)-200a suppresses Wnt/β-catenin signaling by interacting with β-catenin, thereby inhibiting migration, invasion and proliferation. However, the mechanism involved in this suppression remains unclear. In the present study, we investigated the underlying mechanism of miR-200a regulation of epithelial...

متن کامل

microRNA-200a is an independent prognostic factor of hepatocellular carcinoma and induces cell cycle arrest by targeting CDK6.

Deregulation of microRNA‑200a (miR‑200a) has been observed in different types of diseases, including cancers. However, the exact roles of miR‑200a in hepatocellular carcinoma (HCC) are still largely unknown. We aimed to elucidate the prognostic implications of miR‑200a and its biological function in HCC. Quantitative polymerase chain reaction was used to evaluate miR‑200a expression. Western bl...

متن کامل

MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene1

MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC). However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the...

متن کامل

MicroRNA-200a inhibits epithelial-mesenchymal transition in human hepatocellular carcinoma cell line.

OBJECTIVE Our study investigated the role of microRNA (miR)-200a and its molecular targets in hepatocellular carcinoma (HCC) cells. METHODS An inhibitor of miR-200a was transiently transfected into the hepatocellular carcinoma cell line, MHCC-97L. The effect of this transfection on mRNA levels of epithelial-mesenchymal transition (EMT)-related genes was measured by fluorescence-based quantita...

متن کامل

Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels.

Aberrant DNA methylation and microRNA expression play important roles in the pathogenesis of pancreatic cancer. While interrogating differentially methylated CpG islands in pancreatic cancer, we identified two members of miR-200 family, miR-200a and miR-200b, that were hypomethylated and overexpressed in pancreatic cancer. We also identified prevalent hypermethylation and silencing of one of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015